1. Let $f(x)=x^{3}-5 x^{2}-8$ and let g be the inverse function of f.
(a) Find $f(1)$ and $f^{\prime}(1)$.
(b) Find $g(-12)$ and $g^{\prime}(-12)$.
2. Let f be the function defined by $f(x)=x^{3}+7 x+2$. If $g(x)=f^{-1}(x)$ and $f(1)=10$, what is the value of $g^{\prime}(10)$?
3. Let f be the function defined by $f(x)=x^{5}+3 x^{3}+7 x+2$. If $g(x)=f^{-1}(x)$ and $f(1)=13$, what is the value of $g^{\prime}(13)$?
4. Let f be the function defined by $f(x)=7 x^{3}+(\ln x)^{3}$. If $g(x)=f^{-1}(x)$ and $f(1)=7$, what is the value of $g^{\prime}(7)$?
5. Let f be the function defined by $f(x)=x^{7}+2 x+9$. The point $(1,12)$ is on the graph of f. If $g(x)=f^{-1}(x)$, find $g^{\prime}(12)$.
6. Find the equation of the tangent line to the inverse of $f(x)=x^{5}+2 x^{3}+x-4$ at the point $(-4,0)$.
7. Find the equation of the tangent line to the inverse of $f(x)=7 x+\sin (2 x)$ at the point $(0,0)$.
8. Find the equation of the tangent line to the inverse of $f(x)=x^{3}+8 x+\cos (3 x)$ at the point $(1,0)$.
9. The functions f and g are differentiable. Given that $g(x)=f^{-1}(x), f(1)=3$, and $f^{\prime}(1)=-5$, find $g^{\prime}(3)$.
10. The functions f and g are differentiable. Given that $g(x)=f^{-1}(x), f(2)=4, f(4)=-6, f^{\prime}(2)=7$, and $f^{\prime}(4)=11$, find $g^{\prime}(4)$.

2013 AP ${ }^{\oplus}$ CALCULUS AB FREE-RESPONSE QUESTIONS

Graph of f^{\prime}
4. The figure above shows the graph of f^{\prime}, the derivative of a twice-differentiable function f, on the closed interval $0 \leq x \leq 8$. The graph of f^{\prime} has horizontal tangent lines at $x=1, x=3$, and $x=5$. The areas of the regions between the graph of f^{\prime} and the x-axis are labeled in the figure. The function f is defined for all real numbers and satisfies $f(8)=4$.
(a) Find all values of x on the open interval $0<x<8$ for which the function f has a local minimum. Justify your answer.
(b) Determine the absolute minimum value of f on the closed interval $0 \leq x \leq 8$. Justify your answer.
(c) On what open intervals contained in $0<x<8$ is the graph of f both concave down and increasing? Explain your reasoning.
(d) The function g is defined by $g(x)=(f(x))^{3}$. If $f(3)=-\frac{5}{2}$, find the slope of the line tangent to the graph of g at $x=3$.

