Limits	Curve Sketching and Analysis	More Derivatives
Notation for:		Where u is a function of x and
Limit from the left of $f(x)$ as	Critical Points:	a is a constant
$x \rightarrow a$		$\frac{d}{d x}\left(x^{n}\right)=$
	Global Min:	
Limit from the right of $f(x)$ as $x \rightarrow a$		$\frac{u}{d x}(\sin u)=$
	Global Max:	$\frac{d}{d v}(\cos u)=$
		d ${ }^{\text {d }}$
Definition of Continuity: A function is continuous at the point $x=a$ if and only if:	Point of Inflection:	$\overline{d x}(\tan u)=$
		$\frac{d}{d x}(\cot u)=$
1.	Derivatives	$\frac{d}{d x}(\sec u)=$
2.	Definition of Derivative $\underline{d}(f(x))=$	$\frac{d}{d x}(\csc u)=$
3.	$d x$	$\frac{d}{d x}(\ln u)=$
Situations in which limits fail to exist:		$\frac{d}{d x}\left(e^{u}\right)=$
	Alternate Form of Def. of Derivative $\frac{d}{d x}(f(x))$ at $x=a$	$\frac{d}{d x}\left(\sin ^{-1} u\right)=$
Situations in which derivatives fail to exist:		$\begin{aligned} & \frac{d}{d x}\left(\cos ^{-1} u\right)= \\ & \frac{d}{d x}\left(\tan ^{-1} u\right)= \end{aligned}$
	Chain Rule $\frac{d}{d x}[f(u)]=$	$\frac{d}{d x}\left(\cot ^{-1} u\right)=$
Definition of e:		$\frac{d}{d x}\left(a^{u}\right)=$
	Product Rule	$\frac{d}{d x}\left(\log _{a} u\right)=$
Extreme Value Theorem	$\frac{d}{d x}(u v)=$	$\begin{gathered} d x \\ d \end{gathered}$
		$\frac{u}{d x}\left(\sec ^{-1} u\right)$
	Quotient Rule	$\frac{u}{d x}\left(\csc ^{-1} u\right)$
Point-slope form	$\frac{d}{d x}\left(\frac{u}{v}\right)=$	Intermediate Value Theorem
$\ln (1)=\quad \ln (\mathrm{e})=$		
[]Closed Interval () Open Interval	Where u and v are functions of x	Solution to $\mathbf{d y} / \mathbf{d t}=\mathbf{k y}$

Coach Stephens Room 1112

The Mean Value Theorem (derivatives)	Distance, Velocity, and Acceleration $\mathrm{s}(\mathrm{t})$ is the position function, $<x(t), y(t)>$ is the position in parametric	Parametric Equations $\frac{d y}{d x}=$
The Fundamental Theorem of	velocity vector $=$ acceleration vector $=$	$\frac{d^{2} y}{d x^{2}}=$
	speed $($ rectangular and parametric $)=$	Polar Curves
	displacement (change in position)	4 conversions
2nd FTC $\frac{d}{d x} \int_{a}^{g(x)} f(t) d t=$	distance travelled (rectangular and parametric) $=$	Area $=$
Area Under The Curve (Trapezoids)		Slope $=$
	new position	Area Between Polar Curves=
Mean Value Theorem for Integrals (Average Value)	average velocity $=$	When velocity and acceleration have the same sign, the speed of a particle is \qquad . When they have opposite signs, the speed is \qquad
Area between curves:	l'Hôpital's Rule (Bernoulli's Rule)	The Slope of inverse functions are \qquad of each other.
	Euler's Method	If $f(x)$ grows faster than $g(x)$, then... $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=$
Solids of Revolution and Friends General volume equation	Integration by Parts	If $f(x)$ grows at the same rate as $g(x)$, then...
Disk Method		$\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=$
Washer Method	Logistics $\underline{d P}=$	$\int \operatorname{tanudu}=$
Arc Length (rectangular)	$d t$	$\int u^{n} d u=\quad n \neq-1$
Cylindrical Shell Method		$\int u^{-1} d u=$

