Name

Coach Stephens Room 1112			
LimitsNotation for:Limit from the left of $f(x)$ as	Curve Sketching and Analysis Critical Points:	More Derivatives Where u is a function of x and a is a constant	
$x \rightarrow a$ Limit from the right of $f(x)$ as	Global Min:	$\frac{d}{dx}(x^n) = \frac{d}{dx}(\sin u) =$	
$x \rightarrow a$	Global Max:	$\frac{dx}{dx}(\cos u) =$	
Definition of Continuity: A function is continuous at the point x=a if and only if:	Point of Inflection:	$\frac{d}{dx}(\tan u) =$ $\frac{d}{dx}(\cot u) =$	
1.	Derivatives	$\frac{d}{dx}(\sec u) =$	
2.	Definition of Derivative $\frac{d}{d}(f(x)) =$	$\frac{d}{dx}(\csc u) =$	
3.	$dx^{(j(0))}$	$\frac{d}{dx}(\ln u) =$	
Situations in which limits fail to exist:		$\frac{d}{dx}(e^u) =$	
Situations in which derivatives fail to exist:	Alternate Form of Def. of Derivative $\frac{d}{dx}(f(x)) at x = a$	$\frac{d}{dx}(\sin^{-1}u) =$ $\frac{d}{dx}(\cos^{-1}u) =$ $\frac{d}{dx}(\tan^{-1}u) =$	
Definition of e:	Chain Rule $\frac{d}{dx}[f(u)] =$	$dx^{(u^{-1}u)} = \frac{d}{dx}(\cot^{-1}u) = \frac{d}{dx}(a^{u}) =$	
Extreme Value Theorem	Product Rule $\frac{d}{dx}(uv) =$	$\frac{\frac{d}{dx}(\log_a u) =}{\frac{d}{dx}(\sec^{-1}u)}$	
Point-slope form	Quotient Rule $\frac{d}{dx}\left(\frac{u}{v}\right) =$	$\frac{d}{dx}(csc^{-1}u)$ Intermediate Value Theorem	
$\ln(1) = \ln(e) =$			
[] Closed Interval () Open Interval	Where u and v are functions of x	Solution to dy/dt = ky	

Name_____ Stuff You Must Know Cold – AP BC Calculus Coach Stephens Room 1112

	Coach Stephens Room 1112	1
The Mean Value Theorem	Distance, Velocity, and Acceleration	Parametric Equations
(derivatives)	s(t) is the position function,	
	$\langle x(t), y(t) \rangle$ is the position in	dy
		$\frac{dy}{dt} =$
	parametric	dx
	velocity vector =	-2
	5	d^2y
The Fundamental Theorem of	acceleration vector -	$\frac{1}{dx^2}$
Coloulus		
Calculus		
	speed (rectangular and parametric) =	
		Polar Curves
	displacement (change in position)	4 conversions
2nd FTC		
	_	
$\int \frac{d}{dt} \int \int \int \int \int \int \int \int dt dt = \int \int \int \int \int \int \int \int \partial f dt dt =$		A
$dx J^a$	distance travelled (rectangular and	Alea –
	parametric) =	
Area Under The Curve		Slope =
(Trapezoids)		
(110)	now position	Area Between Polar Curves=
	new position	The Detween Four Curves
		When velocity and acceleration
Mean Value Theorem for	average velocity =	have the same sign, the speed of a
Integrals		particle is When
(Avorago Valuo)		they have opposite signs, the speed
(Average value)		18
	l'Hôpital's Rule (Bernoulli's Rule)	The Slope of inverse functions are
Area between curves:		of each other.
		If f(x) grows faster than g(x).
		then
		f(x)
	Euler's Method	$\lim_{x \to \infty} \frac{f(x)}{g(x)} =$
Solids of Revolution and Friends		$\lambda \rightarrow \omega g(\lambda)$
General volume equation		If f(x) more at the
		If f(x) grows at the same rate
	Integration by Parts	as g(x), then
Disk Method	integration by rarts	
DISK WICHIOU		$\lim \frac{f(x)}{x}$ –
		$\begin{array}{c} \prod_{x \to \infty} g(x) \end{array}$
Washer Method	Logistics	
	dP	tanudu =
	$\left \frac{1}{L} \right =$	J
Arc Length (rectangular)	at	C
		$ u^n du = n \neq -1$
		J
Cylindrical Shell Method		$\int u^{-1} du =$
		$\int u^{-au} =$
		5