Summary of Test for Series & Taylor Polynomials

Name_____ Per_____

Test	Series	Converges	Diverges	Comment
<i>nth</i> Term	\sum_{α}^{∞}		$\lim_{n\to\infty}a_n\neq 0$	This test
	$\sum_{n=1}^{n} a_n$			cannot be
	<i>n</i> -1			
Geometric	× ×			Sum:
Series	$\sum_{n=0} ar^n$	r < 1	$ r \ge 1$	$S = \frac{a}{1 - r}$
Telescoping Series	$\sum_{n=1}^{\infty} (b_n - b_{n+1})$	$\lim_{n \to \infty} b_n = L$		Sum: $S = b_1 - L$
<i>p</i> -series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	p > 1	$p \leq 1$	
Alternating	$\sum_{i=1}^{\infty}$	$0 < a_{n+1} \leq a_n$ and		Remainder:
Series	$\sum_{n=1}^{\infty} (-1)^{n-1} a_n$			$ R_n \le a_{n+1}$
	<i>n</i> =1	$\lim_{n \to \infty} a_n = 0$		
Integral: f is	$\sum_{n=1}^{\infty} a_n$	$\int_{0}^{\infty} f(x) dx$ converges	$\int_{0}^{\infty} f(x) dx$ diverges	Remainder: 0 < R
nositive and	$\sum_{n=1}^{2}$	J_1	J_1	$< \int_{-\infty}^{\infty} f(x) dx$
decreasing				J_1
Deet	$a_n = f(n) \ge 0$	- n [$-n\sqrt{\frac{1}{2}}$	Last resort test
ROOL	$\sum a_n$	$\lim_{n\to\infty}\sqrt[n]{ a_n } < 1$	$\lim_{n \to \infty} \sqrt[n]{ a_n } > 1$	inconclusive if
	$\sum_{n=1}^{n}$			$\lim_{n \to \infty} \sqrt[n]{ a_n }$
				$n \to \infty$ $\sqrt{ \alpha_n }$ - 1
Ratio	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\lim_{n \to \infty} a_{n+1} < 1$	$ a_{n+1} > 1$	Test is
Good test for	$\sum a_n$	$\lim_{n \to \infty} \overline{a_n} \leq 1$	$\lim_{n \to \infty} \overline{a_n} > 1$	inconclusive if
factorials and	$\overline{n=1}$			$\lim \left \frac{a_{n+1}}{a_{n+1}} \right $
exponents. Only gives intervals,				$n \rightarrow \infty \mid a_n \mid = 1$
not endpoints.				- 1
Direct	\sum_{α}^{∞}	$0 \leq a_n \leq b_n$ and	$0 \leq b_n \leq a_n$ and	
Comparison $a \ b > 0$	$\sum_{n=1}^{n} u_n$	<u>∞</u>	<u>∞</u>	
$u_n, b_n \ge 0$	<i>n</i> -1	$\sum b_n$ converges	$\sum b_n$ diverges	
		<i>n</i> =1	<i>n</i> =1	
Limit	$\sum_{i=1}^{\infty}$	$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0 \text{ and}$	$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$ and	
Comparison $a h > 0$	$\sum_{n=1}^{n} a_n$			
$u_n, v_n > 0$	11-1	$\sum_{n=1}^{\infty} b_n$ converges	$\sum_{n=1}^{\infty} b_n$ diverges	
		$\sum_{n=1}^{2} z_n$ converges	$\sum_{n=1}^{\infty} a_n$ arrenges	

Summary of Test for Series & Taylor Polynomials

Name_____

Per_____

Maclaurin Series (Taylor Series centered at 0)

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \dots = \sum_{n=0}^{\infty} x^n \quad (|x| < 1)$$

Note: the above can be found by using $a_1 = 1$, and r = x, geometric

$$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^n}{n} - \dots = \sum_{n=1}^{\infty} (-1) \frac{x^n}{n} \quad (-1 \le x < 1)$$

Note: the above can be found by integrating $f(x) = \frac{1}{1-x}$ and dividing by a negative on both sides.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \dots = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad (all \ real \ x)$$

$$sinx = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + \dots = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} \quad (all \ real \ x)$$

Note: *cosx* is the derivative of *sinx*.

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} \quad (all \, real \, x)$$
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{(n)} \quad (-1 < x \le 1)$$

If f(x) is differentiable *n* times at x = a, then its **n**th-order Taylor polynomial centered at *a* is given by

$$P_n(x) = \frac{f(a)}{0!} + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!}(x-a)^k$$

If a = 0, then we may call the polynomial a Maclaurin polynomial.

Taylor's Theorem with Lagrange Remainder

If f is differentiable n + 1 times on some interval containing the center a, and if x is some number in that interval, then

$$f(x) = P_n(x) + R_n(x)$$

Moreover, there is a number z between a and x such that

$$R_n(x) = \frac{f^{(n+1)}(z)}{(n+1)!} (x-a)^{n+1} \text{ or } |R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}$$