## Summary of Test for Series \& Taylor Polynomials

Name
Per

| Test | Series | Converges | Diverges | Comment |
| :---: | :---: | :---: | :---: | :---: |
| $n t h$ Term | $\sum_{n=1}^{\infty} a_{n}$ |  | $\lim _{n \rightarrow \infty} a_{n} \neq 0$ | This test cannot be used to show convergence. |
| Geometric Series | $\sum_{n=0}^{\infty} a r^{n}$ | $\|r\|<1$ | $\|r\| \geq 1$ | Sum: $S=\frac{a}{1-r}$ |
| Telescoping Series | $\sum_{n=1}^{\infty}\left(b_{n}-b_{n+1}\right)$ | $\lim _{n \rightarrow \infty} b_{n}=L$ |  | Sum: $S=b_{1}-L$ |
| $p$-series | $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ | $p>1$ | $p \leq 1$ |  |
| Alternating Series | $\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}$ | $0<a_{n+1} \leq a_{n}$ and $\lim _{n \rightarrow \infty} a_{n}=0$ |  | Remainder: $\left\|R_{n}\right\| \leq a_{n+1}$ |
| Integral: $f$ is continuous, positive, and decreasing | $\begin{gathered} \sum_{n=1}^{\infty} a_{n} \\ a_{n}=f(n) \geq 0 \end{gathered}$ | $\int_{1}^{\infty} f(x) d x$ converges | $\int_{1}^{\infty} f(x) d x$ diverges | Remainder: $\begin{aligned} & 0<R_{n} \\ & <\int_{1}^{\infty} f(x) d x \end{aligned}$ <br> Last resort test |
| Root | $\sum_{n=1}^{\infty} a_{n}$ | $\lim _{n \rightarrow \infty} \sqrt[n]{\left\|a_{n}\right\|}<1$ | $\lim _{n \rightarrow \infty} \sqrt[n]{\left\|a_{n}\right\|}>1$ | Test is inconclusive if $\begin{aligned} & \lim _{n \rightarrow \infty} \sqrt[n]{\left\|a_{n}\right\|} \\ & =1 \end{aligned}$ |
| Ratio <br> Good test for expressions with factorials and exponents. Only gives intervals, not endpoints. | $\sum_{n=1}^{\infty} a_{n}$ | $\lim _{n \rightarrow \infty}\left\|\frac{a_{n+1}}{a_{n}}\right\|<1$ | $\lim _{n \rightarrow \infty}\left\|\frac{a_{n+1}}{a_{n}}\right\|>1$ | Test is inconclusive if $\begin{aligned} & \lim _{n \rightarrow \infty}\left\|\frac{a_{n+1}}{a_{n}}\right\| \\ & =1 \end{aligned}$ |
| Direct Comparison $a_{n}, b_{n}>0$ | $\sum_{n=1}^{\infty} a_{n}$ | $0 \leq a_{n} \leq b_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converges | $\begin{gathered} 0 \leq b_{n} \leq a_{n} \text { and } \\ \sum_{n=1}^{\infty} b_{n} \text { diverges } \end{gathered}$ |  |
| Limit Comparison $a_{n}, b_{n}>0$ | $\sum_{n=1}^{\infty} a_{n}$ | $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L>0$ and $\sum_{n=1}^{\infty} b_{n}$ converges | $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L>0$ and $\sum_{n=1}^{\infty} b_{n}$ diverges |  |

## Summary of Test for Series \& Taylor Polynomials

Name

## Per

## Maclaurin Series (Taylor Series centered at 0)

$$
\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\cdots=\sum_{n=0}^{\infty} x^{n} \quad(|x|<1)
$$

Note: the above can be found by using $a_{1}=1$, and $r=x$, geometric

$$
\ln (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\cdots-\frac{x^{n}}{n}-\cdots=\sum_{n=1}^{\infty}(-1) \frac{x^{n}}{n}(-1 \leq x<1)
$$

Note: the above can be found by integrating $f(x)=\frac{1}{1-x}$ and dividing by a negative on both sides.

$$
\begin{gathered}
e^{x}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad(\text { all real } x) \\
\left.\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \quad \text { (all real } x\right)
\end{gathered}
$$

Note: $\cos x$ is the derivative of $\sin x$.

$$
\begin{gathered}
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!} \quad(\text { all real } x) \\
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\cdots=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{(n)} \quad(-1<x \leq 1)
\end{gathered}
$$

If $f(x)$ is differentiable $n$ times at $x=a$, then its $\mathbf{n}^{\text {th }}$-order Taylor polynomial centered at $a$ is given by

$$
P_{n}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

If $a=0$, then we may call the polynomial a Maclaurin polynomial.

## Taylor's Theorem with Lagrange Remainder

If f is differentiable $n+1$ times on some interval containing the center $a$, and if $x$ is some number in that interval, then

$$
f(x)=P_{n}(x)+R_{n}(x)
$$

Moreover, there is a number $z$ between a and $x$ such that
$R_{n}(x)=\frac{f^{(n+1)}(z)}{(n+1)!}(x-a)^{n+1} \quad$ or $\quad\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1}$

