Summary of Test for Series & Taylor Polynomials
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Summary of Test for Series & Taylor Polynomials

Name Per

Maclaurin Series (Taylor Series centered at 0)

1
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Note: the above can be found by using a; = 1, and r = x, geometric
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Note: the above can be found by integrating f(x) = ﬁ and dividing by a negative on both sides.
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If f£(x) is differentiable n times at x = a, then its n""-order Taylor polynomial centered at a is given by
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If a = 0, then we may call the polynomial a Maclaurin polynomial.
Taylor’s Theorem with Lagrange Remainder

If f is differentiable n + 1 times on some interval containing the center a, and if x is some number in
that interval, then

f(x) = B(x) + Ry (%)

Moreover, there is a number z between a and x such that
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